

Mathematics Specialist Units 1,2 Test 6 2017

Section 1 Calculator Free Complex Numbers, Proof

STUDENT'S NAME

DATE: Thursday 7 September

TIME: 50 minutes

MARKS: 58

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (5 marks)

Express the following recurring decimals as a fraction.

(a) $0.\overline{123}$

[2]

(b) $6.8\overline{07}$

[3]

2. (3 marks)

Prove the product of three consecutive even whole numbers is a multiple of 8.

3. (6 marks)

(a) Prove $\sqrt{11}$ is irrational.

[3]

(b) Prove $\log_3 7$ is irrational.

[3]

4. (6 marks)

Solve

(a)
$$2x^2 + 3x + 7 = 0$$
 [3]

(b)
$$z - 2\overline{z} = 4 + 3i$$
 (Hint: let $z = a + bi$) [3]

5. (23 marks)

Given w = 5 - 4i and z = -2 + 3i

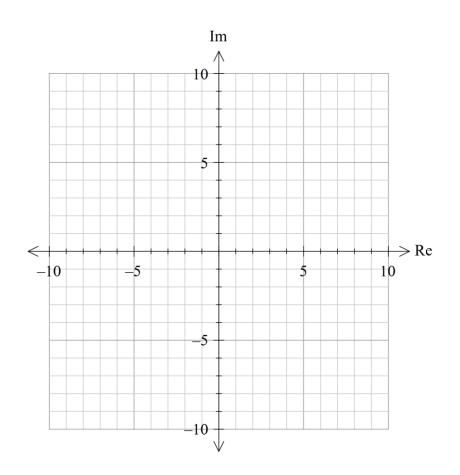
(a) Determine

(i)
$$z^2$$
 [2]

(ii)
$$w\overline{z}$$
 [2]

(iii)
$$\frac{w}{z}$$
 [3]

(iv)
$$\operatorname{Im}(w+iz)$$
 [2]


(b) Determine whether
$$\overline{w} \times \overline{z} = (\overline{wz})$$
 [4]

(c) Determine *a* and *b* if
$$a+bi=i(w^{-1})$$
 [4]

(d) Locate each of the following on the Argrand Plane shown.

(i)
$$-2i$$
 [1]

(iii)
$$\frac{z}{i}$$
 [3]

6. (12 marks)

Use proof by induction for each of the following.

(a) Prove $3^{2n} - 1$ is divisible by 8 for integer $n \ge 1$. [6]

(b)	Prove	$\cos x$		$ \begin{bmatrix} n \\ - m \\ sin nx \end{bmatrix}^n = \begin{bmatrix} \cos nx \\ \sin nx \end{bmatrix} $	$-\sin nx$	for integer $n \ge 1$	[6]
		$\sin x$	$\cos x$		$\cos nx$		

7. (3 marks)

Prove every prime number greater than 4 is either one more or one less than a multiple of 6.